AI model training is an essential part of machine learning. यह प्रक्रिया data preprocessing, model selection, training, evaluation, और deployment को cover करती है।
AI model training involves using algorithms to learn patterns from data. यह प्रक्रिया supervised, unsupervised, और reinforcement learning पर आधारित हो सकती है।
# Example of data preprocessing using Python import pandas as pd from sklearn.preprocessing import StandardScaler data = pd.read_csv('dataset.csv') scaler = StandardScaler() data_scaled = scaler.fit_transform(data)
Choosing the right model is crucial. Common models include Decision Trees, Neural Networks, और Support Vector Machines.
# Training a simple machine learning model from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier data_train, data_test, labels_train, labels_test = train_test_split(data, labels, test_size=0.2) model = RandomForestClassifier() model.fit(data_train, labels_train)
# Model evaluation using accuracy from sklearn.metrics import accuracy_score predictions = model.predict(data_test) accuracy = accuracy_score(labels_test, predictions) print("Model Accuracy:", accuracy)
Deploying an AI model involves integrating it into a web application or API.
# Deploying model using Flask from flask import Flask, request, jsonify import pickle app = Flask(__name__) model = pickle.load(open('model.pkl', 'rb')) @app.route('/predict', methods=['POST']) def predict(): data = request.get_json() prediction = model.predict([data['features']]) return jsonify({'prediction': prediction.tolist()}) if __name__ == '__main__': app.run(debug=True)
1. Use clean and well-labeled data.
2. Perform feature engineering.
3. Optimize hyperparameters.
4. Monitor model performance over time.
5. Deploy models with version control.
AI model training is a continuous process. नई techniques और algorithms को सीखते रहना महत्वपूर्ण है। Keep experimenting and improving your models!